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Note 

Numerical Simulation of the Current-Voltage 
Characteristics of MIS Tunnel Devices 

1. INTRODUCTION 

Several studies of semiconductor devices numerical modeling have been pub- 
lished. In these papers the basic equations describing the working of the devices 
have been solved using various numerical techniques [l], e.g., Iinite differences, 
finite boxes, and finite elements which allow the discretization of the involved basic 
partial differential equations. Furthermore, different iterative methodes, e.g., 
Newton-Raphson method and Gummel’s iterative algorithm, have been developed 
in order to solve the nonlinear algebraic system obtained from the discretized basic 
equations. 

In this paper, we have developed a computation method for the numerical 
simulation of tunnel metal insulator semiconductor (MIS) structures, based on 
Runge-Kutta integration [2, 31 as well as on prediction-correction methods [3]. 
A number of theoretical or experimental studies and several models of the working 
of MIS structures have already been proposed in which the numerical solution is 
obtained by solving a set of nonlinear differential equations [4-81. However, using 
some simplifications and approximations, the above equations are transformed into 
a set of nonlinear algebraic equations needing less CPU time [g-13]. We also point 
out that the rigorous solution we propose is necessary when the substrate thickness 
is less than the maximum width of the depletion layer; this situation is familiar for 
VLSI electronics. 

2. BASIC EQUATION 

The basic equations governing the transport of carriers in a metal-insulator-semi- 
conductor tunnel structure in the steady-state regime are: 

(a) Poisson equation [14, p. 883; (b) current-field equations [ 14, p. 663; 
(c) continuity equations [ 14, p. 661 using SHR recombination model [ 14, p. 461. 
The above equations are completed by the appropriate boundary conditions 
(Section 3 and Ref. [ 121). It is worth noticing here that the condition of global 
neutrality gives for the charges, 

Qss+Qf+Qsc+Qm~+Qmb=O. (1) 
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We introduce the charge Qmb on the back contact because the electric field at x = L 
is not equal to zero when the substrate thickness is less than the maximum width 
of the depletion layer. 

An expression for Q, is given in [4, 123 while according to the law of Gauss we 
obtain: 

Q, = C,, I’,, = y I’,, (11) 

Qmb = ~o-Q(L) (11) 

Qs, = -~o~bW) - E(L)). (III) 

3. ALGORITHM 

Basic (a), (b), (c) transport equations and their boundary conditions (Section 2 
and [9]) can be transformed in an equation system where Y, n, p, Y’ = dY/dx = 
n’ = dn/dx an p’ = dpfdx are regarded as six unknown functions, 

dY 
-= 
dx 

Y’ 

dY’ -= 
dx -&(P-n+N,) 

dn 
z=Tl’ 

dn’ 4 w+p yrn’+&c -=-- 
dx kT p. kT kT dx 

(1) 

(2) 

(3) 

(4) 

(5) 

dp’ 4 WI 4 -=-- 
dx kT pp 

-kTY$‘-;Tpz, 

and the boundary conditions, 

(6) 

Y(L) = 0 

n(L) = no 

P(L) = PO 

(7) 

(8) 

(9) 
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&ox v- AmY - Y(O) Y’(0) = -F 1 
s 6 -G (Qm + Q,) 

, 

4 4 no n’(0)=kTn(O) Y’(0)-rTz Vc, 

,!(‘wi xe- n 
( 

e-Yw”‘ ~ Y(O))/kT 40) -- 
n0 ) 

+-$t c C,J,i((l -fifi) 40) -finli) 
n I 

4 4 PO 
P’(0)=kTP(O) Y’(0)-kTG v, 

x e-X;45 
( 

eW’ox - ‘f’(O)VkT _ P(O) __ 
PO > 

+&-j-z cpiNti(fiP(o)-(l -fi)pli). 
P I 

(10) 

(11) 

The Runge-Kutta subroutine, used in the program, is based on Verner’s frfth- 
and sixth-order pair of formulas for finding approximation to the solution of a 
system of equations. The integration step size is automatically chosen in order to 
keep the global error proportional to a tolerance specified by the user of the 
program and obtain the values of Y, n, p, Y’, n’, and p’ at same time through every 
integration step. 

The procedures of calculation for every applied voltage point are as follows: 

(1) The trial values ao, /IO, and y. of the derivatives Y’, n’ and p’ at x = L 
are given by the boundary conditions (7~(9). 

(2) The values of Y, n, p, Y’, n’, and p’ are calculated successively according 
to the Runge-Kutta method using Eq. (l)-(6) and the values of Y, n, p, Y’, n’, and 
p’ at last point. At last, the prediction values of Y(O), n(O), p(O), Y’(O), n’(O), and 
p’(0) are obtained. 

(3) The correction values, Y;(O), n;(O), and p;(O), are obtained from the 
boundary conditions (lOt( 12). 

(4) The differences F= dY’(0) = Y’;(Q) - Y’(O), G = h’(0) = n;(O) - n’(O), 
and H = dp’(0) = p;(O) -p’(O) are dependent numerically on the trial value ~1, p, 
and y at x = L. F, G, and H are the implicit functions of a, /?, and y. They can be 
expanded in first-order Taylor series: 

F(a, B, Y) = Fo(ao, Boy yo) + wax Aa + wag Aa + way AY 

G(a, A Y) = Go(ao, Bo, yo) + aG/aa Aa + amp 4 + way AY 

H(a, P, Y I= Ho(ao, PO, yo) + aHPa Aa + affm AB + away AY. 
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The partial derivatives aF/aa, aG/aa, aH/aa, etc. are numerically calculated. 
Knowing that the solution corresponds to: F(a, fi, y) = G(a, fi, y) = H(a, j3, y) = 0, 
the following three equations are established: 

aF aF aF 
aaapay 

aG aG aG --- 
au aa ay 

aH aH aH 
acragay 

Aa 

AB 

4 

=- 

FO 

GO 

HO 

Solving this set of equations, a new set of trial a, ( = a0 + Au), /I1 ( = & + d/I), and 
y1 ( = y. + Ay) are found. 

(5) The above steps (2)-(4) are repeated until values of AF/F, AG/G, and 
AH/H are less than some limit, (i.e., lo-‘). The accuracy of results is significantly 
better than those resulting from the criteria AY/Y< 10A5, An/n < 10P4, and 
Ap/p < 10w4, which are generally used in other numerical simulations. 

The flowchart of the program is shown in Fig. 1. Our program, developed on 
HP1000 computer, has about 1500 FORTRAN statement lines and needs only 
memory 16K words. It can be easily transformed on minicomputer. 

4. RESULTS 

We have used our program for a wide variety of situations: thickness of insulator 
varying from 6 = 5 A (nearly metal-semiconductor contact) to 6 = 50 8, (thick tunnel 
diode); the thickness L of the substrate is taken less than the width of depletion 
layer W as in realistic actual VLSI applications. If L > W (case of solar MIS tunnel 
diodes), the authors have shown that numerically simpler procedures can be used 
[12, 133. In order to compare simulation results with experimental (I, V) charac- 
teristics TiW/Si Schottky diodes fabricated in Thomson Labs on (111) n-type 
Si(N, = 1.5 x lOI cmmm3, 4,, = 0.2eV, L = 0.4 pm have been modeled (the device is 
an important element for STL logic circuit [15]). 

The program allows, evidently, not only the simulation of I-V characteristics but 
also gives the evolution of internal physical parameters vs depth (density of injected 
carriers, distribution of potentials, Fermi levels, curents, electric field, carrier den- 
sities, etc.), so a very detailed physical analysis of examined structures can be 
obtained. The results of simulations are very close to experimental curves. In 
Figs. 2a and 2b typical examples of simulation are given. 
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Q begin 
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I 

FIG. 1. The flowchart of the simulation program. 
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FIG. 2. (a) Experimental and theoretical (simulated) I-V characterization of a MIS Schottky diode 
with 0.5 nm thick oxide layer [lS]. (b) Electron (4,“) and holes (4,) quasi fermi levels vs x (forward 
bias). 
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5. CONCLUSION 

The presented program allows a detailed analysis of realistic MIS tunnel struc- 
tures. Specially it gives the possibility to characterize both kinetic and electristatic 
influences of interface states. It allows a rigorous study of the electrical behaviour 
of MIS devices and not only improves the understanding of their working but, also, 
indicates the technological modifications which should be operated to enhance STL 
circuits. 

c,, c,: 
c . ox. 

; 
k: 
L: 
N,: 
N, : 
n: 
P: 
4: 
CL: 
Q,: 
es,. : 

;;;i 
r 

APPENDIX: LIST OF SYMBOLS 

electron and hole capture coefficients 
oxide layer capacitance (per unit surface) 
electric field 
Schockley-Hall-Read interface states occupany 
Boltzmann’s constant 
semiconductor layer thickness 
semiconductor doping concentration 
interface states density 
semiconductor electron density; n, equilibrium value; dn = n - n, 
semiconductor hole density; pO equilibrium value; dp = p - p,, 
electron charche 
interface states charges (per unit area) at x = 0 
fixed charges (per unit area) 
semiconductor space charge (per unit area) 
oxide layer-metal contact frontal charge (per unit area) at x = -6 
semiconductor-metal contact (back) charge (per unit area) at x = L 
absolute temperature 

V,, , VCp : electron and hole thermal velocities 
v . ox. voltage drop accross the oxide layer; V,,, equilibrium value; 

6 VOX = VOX - VOX, 
R: Shockley-Hall-Read recombination rate 
w Space charge width 
6: oxide layer thickness 
Eg: vacuum permitivity 
E E,: OX? oxide and semiconductor relative permitivity 
P”, I$: electron and hole mobilities 

k: 
metal-semiconductor work function difference 
electrostatic potential. 
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